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Abstract

We provide a new way of understanding Golay pairs (of
length N) of sequences in terms of the (2N + 1)-dimensional
discrete Heisenberg-Weyl group over the field Z2. Our
methodology provides a different insight into the nature
of these sequences, as well as a mechanism for designing
sequences with desirable correlation properties. Libraries
of waveforms formed using these constructions are able to
provide collections of ambiguity functions that cover the
range-Doppler plane in an efficient way, and thus provide
the basis for a suite of waveforms optimized for extraction
of information from the environment in an active sensing
context.

1 Introduction

Golay complementary sequences are pairs of sequences of
unimodular complex numbers, usually real, with the prop-
erty that the sum of their individual auto-correlation func-
tions forms a delta spike or thumb tack. They were dis-
covered independently by Golay [7], and by Shapiro [16].
These sequences and variants of them have been considered
for use by many authors in the construction of phase-coded
radar waveforms and in modulation schemes for commu-
nications (see, for example, [9, 8, 15, 14, 11]). They have
been used and investigated in numerous situations both in
applications and in purely theoretical investigations. Effec-
tively, in a radar context they produce zero range sidelobes
at zero Doppler.

Our aim is to introduce a completely new framework for
understanding Golay pairs (of length 2m) in terms of the
(2m+1)-dimensional discrete Heisenberg-Weyl group over
the field Z2. This group is more familiar in coding theory
for communications, where it has been used by Calderbank
et. al [4] in the study of Kerdock and Preparata codes. The
Heisenberg-Weyl group over Z2 provides the mathematical
framework for construction and analysis of first and second
order Reed Muller codes, whereas the more complicated
Heisenberg-Weyl group over Z2m provides the mathemati-
cal framework for the description of Golay pairs. The latter
group is the natural finite version of the continuous Weyl-
Heisenberg group, which is the basic object for the alge-

braic treatment of the radar ambiguity function (see [13]).
We have been able to show how to pass between the al-
gebras of these two discrete groups, thus allowing us to
formulate the Golay property in the simpler group and to
analyse the structure of Golay pairs at this level. This trans-
fer property is encapsulated in an apparently novel formula
that relates translation in the Z2 world with translation in
the Z2m world, in the context of Heisenberg-Weyl groups.

Using this analysis we are able to discuss not only com-
plementary pairs, but also collections of them that relate
naturally to each other. These collections have also been
discovered previously in the work of Welti [17] and in the
so-called Prometheus Orthonormal Set (PONS) of Byrnes
[3]. Variants of them obtained by “special” permutations of
the Welti-PONS codes have been described and used in a
communications context by Popovic [15] and Budisin [2].
These variants share the correlation properties of the origi-
nal Welti-PONS codes. They form special subgroups of the
Z2-Heisenberg-Weyl group of operators.

Our work shows how all of these collections arise naturally
from the algebra of the situation governed by the Z2 view,
even though the Golay property is describable in the Z2m

world. We have been able to characterize the waveform
collections encompassed by the Popovic-Budisin construc-
tion, applied to the Welti-PONS waveform collections, thus
showing their special nature among waveforms/codes. Our
methodology provides new insight into the nature of these
codes, and a new technique for their analysis, as well as a
mechanism for designing sequences with desirable correla-
tion properties both for communications and sensing appli-
cations.

The paper is organised as follows. We begin by de-
scribing the general construction and properties of finite
Heisenberg-Weyl groups. In Sections 3 and 4 we show
how the conditions for a pair of sequences to be Golay
complementary can be formulated in terms of two partic-
ular Heisenberg-Weyl groups. In Section 5 we give suf-
ficient conditions for orthonormal bases of cyclic or Z2m -
Golay complementary sequences to exist and then demon-
strate how to relate this condition back to the usual linear
or Z-Golay complementary sequences in Section 6. As an
example, in Section 7, we show how the Budisin-Popovic
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Golay complementary sequences [2] fit into our scheme.

Finally, we note that this paper is really a summary of re-
sults. We have omitted many of the proofs, and derivations
have been shortened or left out entirely.

2 Discrete Heisenberg-Weyl Groups

In this section we give a short summary of the construc-
tion and properties of finite Heisenberg-Weyl groups. For a
more detailed description and further references see [10].

We begin by defining a configuration space A = Zmq con-
sisting of m-tuples of elements from the integers modulo q.
In this paper, we will take q = pn, for some prime number
p. Under addition, A forms an Abelian group. In radar the-
ory the space A, with m = 1 would represent discretized
version of the range space, while in discrete quantum me-
chanics the space A could represent possible discrete posi-
tions for a particle.

Define a Hilbert space H, having orthonormal basis

{|a〉 : a ∈ A}, (1)

which we refer to as the Dirac basis. Note that we use the
“bra-ket” notation for elements of the Hilbert space. An
arbitrary element |φ〉 ∈ H can be expanded in this basis as

|φ〉 =
∑
a∈A

〈a |φ〉 |a〉, (2)

where 〈· | ·〉 is the inner product on H.

The dual group of A, denoted Â, consists of the homomor-
phisms from the group A into the unit circle Π in C. Â is
also an Abelian group (under multiplication) and is (since
A is finite) isomorphic to A. This isomorphism is made ex-
plicit through identification of each b ∈ A with a γb ∈ Â,
such that

γb(a) = ωb·a, (3)

for all a ∈ A, where ω = exp(2πi/p), and · denotes the
usual dot product on Zmq . We see from (3) that the elements
of Â are just discrete sinusoids, or multi-dimensional ver-
sions of such. To each element of γb ∈ Â we can assign a
vector in H by

| b̂〉 =
im/2√
|A|

∑
a∈A

ωb·a |a〉. (4)

The set {| â〉 : a ∈ A} also forms an orthonormal basis for
H, which we refer to as the Fourier basis. We can define the
unitary Fourier transform operator relating this orthonormal
basis to (1) by

F =
im/2√
|A|

∑
a,b∈A

ωb·a |a〉〈b |, (5)

where |a〉〈b | represents the cross projection operator on H
whose action on |φ〉 ∈ H is |a〉〈b | |φ〉 = 〈b |φ〉|a〉

We will denote the groupA× Â ' A×A, which we regard
as a Zq-module over the ring Zq, by E. When q is prime,
Zq is a field and E is a vector space. We will refer to E as
the phase space.

On H we define the unitary operators {D(a,b) : (a,b) ∈
E} by

D(a,b) =
∑
c∈A

ωb·c |c + a〉〈c |. (6)

Two such operators have the multiplication rule

D(a,b)D(a′,b′) = ωb·a′
D(a + a′,b + b′), (7)

from which we have the commutator relation

D(a,b)†D(a′,b′)D(a,b)D(a′,b′)† = ωa·b′−a′·bI, (8)

where † denotes adjoint.

The set of unitary operators on H

E = {T (λ,a,b) = ωλD(a,b) : λ ∈ Zq, (a,b) ∈ E},
(9)

if q 6= 2, or

E = {T (λ,a,b) = iλD(a,b) : λ ∈ Z4, (a,b) ∈ E},
(10)

if q = 2, forms an representation of the discrete
Heisenberg-Weyl group on H. This representation is ir-
reducible [12, 4]. This means that there are no nontrivial
subspaces of H invariant under the action of E.

The center of the group E, Z(E), consists of the elements
{ωλI : λ ∈ Zq}, or {iλI : λ ∈ Z4} if q = 2, where I is the
identity operator on H. The factor space E/Z(E) is easily
seen to be the phase spaceE. Considering the commutation
relation (8), we can define the symplectic inner product

((a,b), (a′,b′)) = a · b′ − a′ · b, (11)

on the phase space E, and note that two operators D(a,b)
andD(a′,b′) commute if and only if ((a,b), (a′,b′)) = 0.
We may then identify subgroups of E consisting mutually
commuting sets of operators D(a,b) with isotropic sub-
modules of E. We also define the symplectic dual, or just
dual, of any submodule (subspace) H ⊆ E to be

H
⊥

= {(a,b) ∈ E : ((a,b), (a′,b′)) = 0,∀ (a′,b′) ∈ H}.
(12)

An isotropic subspace satisfies H ⊆ H
⊥

. It is maximal
isotropic if and only if this inclusion is an equality. An
isotropic submodule (subspace) H of E corresponds to the
Abelian subgroup {D(a,b) : (a,b) ∈ H} of E.

Finally, in this section, we consider the space of linear op-
erators O on the Hilbert space H. We have the following
theorem, which can be prove by substituting (6) into (13):



Theorem 1. Any operator S ∈ O can be represented as

S =
1
|A|

∑
(a,b)∈E

Tr(D(a,b)†S)D(a,b). (13)

We refer to s(a,b) = Tr(D(a,b)†S) as the Weyl trans-
form of S.

Equation (13) implies that the map S → s(a,b) =
Tr(D(a,b)†S) gives an isometry from O to L2(E), with
the inner products related by

Tr(S†R) =
1
|A|

∑
(a,b)∈E

s(a,b)r(a,b). (14)

We note that the orthogonal projection on to a vector |φ〉,
namely |φ〉〈φ |, has the expansion

|φ〉〈φ | = 1
|A|

∑
(a,b)∈E

Aφ(a,b)D(a,b), (15)

where Aφ(a,b) = 〈φ |D(a,b)|φ〉 is the ambiguity func-
tion of |φ〉.

3 Golay Sequences

Consider two unimodular sequences of complex numbers
x and y of length N . Two such sequences are said to be
Golay complementary if the sum of their respective auto-
correlation functions satisfy

corrk(x) + corrk(y) = 2Nδk,0, (16)

for k = −(N−1), · · · , (N−1). We note that the remaining
shifts are automatically zero. Such sequences have an ex-
tensive literature, a sample of which are [17, 16, 8, 2, 6, 7, 1,
5]. We can write the condition (16), at least for cyclic con-
volutions, in terms of a particular finite Heisenberg-Weyl
group. We will show how results for linear convolutions
can be recovered in Section 6.

We begin by considering the case in which the configura-
tion space, which label positions in the sequence, takes the
form A = Z2m . In this case we define the Hilbert space
Hm with Dirac basis

FD = {|j〉 : j ∈ Z2m}. (17)

We can then define the finite Heisenberg-Weyl group

Em = {ωµ∆(j, k) : µ ∈ Z2m , (j, k) ∈ Em}, (18)

where Em = Z2m × Z2m , ω = exp(2πi/2m) and the uni-
tary operators ∆(j, k) are defined by

∆(j, k) =
∑
l∈Z2m

ωkl| l + j〉〈l |. (19)

As noted above this is an irreducible representation.

The conditions for two vectors |φ〉, |ψ〉 ∈ Hm to be Z2m -
Golay complementary are,

1. |φ〉 and |ψ〉 have unimodular coefficients (up to an
overall normalising constant), and

2. for all non-zero j ∈ Z2m ,

〈φ |∆(j, 0)|φ〉+ 〈ψ |∆(j, 0)|ψ〉 = 0. (20)

The condition (20) can be written equivalently as,

Tr ((|φ〉〈φ |+ |ψ〉〈ψ |) ∆(j, 0)) = 0, (21)

which implies that the projectorQ = |φ〉〈φ |+|ψ〉〈ψ |must
be orthogonal to the subspace S∆ spanned by the orthonor-
mal set {∆(j, 0) : j ∈ Z2m , j 6= 0} in the Hilbert-Schmidt
class O of operators on Hm.

Suppose, now, that we have bijection ι : Z2m → Zm2 . Then
each |j〉 ∈ FD can be labelled by a unique a ∈ Z2m ; that
is, a binary string, so that |j〉 ≡ |a〉, with ι(j) = a. We
take ι to be the mapping from j to its binary representation.
The bijection ι now allows us to define a unitary irreducible
representation of the finite Heiseberg-Weyl group with con-
figuration space Zm2 on Hm:

Em = {iλD(a,b) : λ ∈ Z4, (a,b) ∈ Em}, (22)

where Em = Zm2 × Zm2 and the unitary operators D(a,b)
are defined by

D(a,b) =
∑

c∈Zm
2

(−1)b·c|c⊕ a〉〈c |. (23)

Here we denote addition on Zm2 by ⊕ to distinguish it from
addition on Z2m in (18). Obviously, the bijection ι induces
a bijection ι2 : Em → Em given by ι2(a,b) = (j, k).

We shall consider the expansion of the ∆(j, 0) in terms of
the D(a,b). Let us write this as

∆(j, 0) =
∑

(a,b)∈Em

αj(a,b)D(a,b), (24)

where the αj will be determined later.

In term of the Weyl representation (21) becomes∑
(a,b)∈Em

(Aφ +Aψ)(a,b) αj(a,b) = 0, j 6= 0, (25)

where Aφ and Aψ are the ambiguity functions of |φ〉 and
|ψ〉, and we have used (15). We see that a sufficient con-
dition for the pair (|φ〉, |ψ〉) to be Z2m -Golay complemen-
tary is that the supports of Aφ + Aψ and αj be disjoint



for all j 6= 0. We will define the support of an opera-
tor S ∈ O to be the support of its Weyl transform s, i.e.,
suppS = supp s, where

s(a,b) =
1

2m
Tr(SD(a,b)†), (26)

and we will further define the support of a subspace S ⊂ O
to be

suppS =
⋃
S∈S

suppS. (27)

Proposition 1. A sufficient condition for a pair of vectors
(|φ〉, |ψ〉) to be Zm2 -Golay complementary is that

supp (Aφ +Aψ) ∩ suppS∆ = ∅. (28)

We note that the projector D(a,b)QD(a,b)† has the same
support as Q, for all (a,b) ∈ Em. Thus, if (|φ〉, |ψ〉)
satisfies (28), then so do (D(a,b)|φ〉, D(a,b)|ψ〉), for all
(a,b) ∈ Em.

Given the last statement it makes sense to try to minimise
the support of the projection Q = |φ〉〈φ | + |ψ〉〈ψ | or
equivalently the function Aφ +Aψ . Now the 1-D projector
|φ〉〈φ | associated with maximal isotropic subspaces of Em
or equivalently maximally commutative subgroups of Em,
have the smallest support of any of 1-D projectors. In fact,
each maximal isotropic subspace H ⊂ Em is associated
with an orthonormal basis,

F = {|a,b, φ〉 = D(a,b)|φ〉 : (a,b) ∈ Em/H}. (29)

where |φ〉 is any normalised vector in Hm for which

D(a,b)|φ〉〈φ |D(a,b)† = |φ〉〈φ |, (30)

for all (a,b) ∈ H . For all vectors in |φ′〉 ∈ FH , the sup-
port of |φ′〉〈φ′ | is H .

By choosing a pair of vectors associated with the same
maximal isotropic subspace H , that is, taking

QH = |φ〉〈φ |+D(a1,b1)|φ〉〈φ |D(a1,b1)†, (31)

for some (a1,b1) ∈ Em/H , we ensure that suppQH ⊆
suppAφ = H . In fact, the Weyl transformation of QH is

Tr(QHD(a,b)†) = (1 + (−1)a1·b+a·b1)Aφ(a,b), (32)

so that, writing K = {(0,0), (a1,b1)},

suppQH = H ∩K⊥
. (33)

Thus, our goal is to find a maximal isotropic subspace H
and a subspace K such that H ∩K⊥ ∩ suppS∆ = ϕ.

We next consider the form of suppS∆.

4 The support of S∆

Let S∆ ⊂ O be the subspace spanned by the operators

{∆(j, 0) : j ∈ Z2m , j 6= 0}. (34)

The operator ∆(j, 0) has expansion coefficients in terms of
the operators D(a,b), given by

αj(a,b) = 2−mTr
(
∆(j, 0)D(a,b)†)

)
= 2−m

∑
k∈Z2m

∑
c∈Zm

2

(−1)b·c〈c⊕ a |k + j〉〈k |c〉

= 2−m
∑

c∈Zm
2

(−1)b·(c⊕a)〈c |c⊕ a + j〉

= 2−m
∑

c∈Zm
2

(−1)b·(c⊕a)δc,c⊕a+j .

(35)

We denote by Ca ⊆ Zm2 the subspace of elements of
Zm2 which are covered by a, by which we mean that they
have 1 entries only where a has 1 entries. Write w =
(1, 0, 0, · · · , 0) ∈ Zm2 and w = (0, 1, 1, · · · , 1) ∈ Zm2 .
For j ∈ Z2m , let Aj be the set of a ∈ Zm2 such that

c− c⊕ a = j, (36)

has a solution c ∈ Zm2 .

Proposition 2.

∆(j, 0) =∑
a∈Aj

1
|Ca ∩ Cw|

∑
b∈Ca∩Cw

(−1)b·(c0(a,j)⊕a)D(a,b),

(37)

where c0(a, j) is the unique solution of

c0 − c0 ⊕ a = j, (38)

with c0 ∈ Ca ∩ Cw.

Now return to the subspace S∆ spanned by the set

{∆(j, 0) : j ∈ Z2m , j 6= 0}.

We have the following result.

Proposition 3. The support of the subspace S∆ is

suppS∆ = {(a,b) : a ∈ Zm2 \{0}.b ∈ Ca ∩ Cw} (39)

Proof. First note that 0 /∈ Aj for j 6= 0. For each a ∈
Zm2 /{0}, there is at least one non-zero j ∈ Z such that
a ∈ Aj . For any such j, αj(a,b) 6= 0, if and only if
b ∈ Ca ∩ Cw.

Figure 1 shows the support of the subspace S∆ for m = 4
and m = 5. We note that the support has the form of a pair
of Sierpinski triangles.
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Figure 1: Supports of the subspace S∆ for m = 4 and
m = 5.

5 Orthonormal bases of Z2m-Golay pairs

Let us now consider the maximal isotropic subspacesHP ∈
Em which have an associated orthonormal basis consist-
ing of elements whose coefficients have constant modulus.
Such maximal isotropic subspaces take the form

HP = {(a,Pa) : a ∈ Zm2 }, (40)

where P is any binary symmetric matrix. In this case we
have

HP∩suppS∆ = {(a,Pa) : a ∈ Zm2 \{0},Pa ∈ Ca∩Cw}.
(41)

The characters of Zm2 × Zm2 take the form

γ(a′,b′)(a,b) = (−1)a
′·b⊕a·b′

, (42)

where (a′,b′) ∈ Zm2 × Zm2 .

Proposition 4. Let HP ∈ Em be the maximal isotropic
subspace corresponding to the binary symmetric matrix P

as defined in (40). If there exists a character γ(a0,b0) of
Zm2 × Zm2 , such that

γ(a0,b0)({(a,Pa) : a ∈ Zm2 \{0},Pa ∈ Ca ∩ Cw})
= {−1},

(43)

then for each |φ〉 ∈ FHP
, the pair (|φ〉, D(a0,b0)|φ〉) is

Z2m -Golay complementary.

Proof. This follows from the arguments in Section 3.

Note that if there exist several characters γ(a,b) of Zm2 ×Zm2 ,
with (a,b) ∈ Em/HP such that (43) is satisfied, then each
|φ〉 ∈ FHP

will have several Goly complementary partners,
one corresponding to each character. Also, the condition
(43) is equivalent to stating that we can find an operator
D(a0,b0) which anticommutes with every element of the
intersection {D(a,b) : (a,b) ∈ HP ∩ suppS∆}.

Example For m = 4 Figure 2 shows the supports of the
maximal isotropic subspaces HP and HQ with

P =


0 1 0 1
1 0 0 0
0 0 0 0
1 0 0 0

 and Q =


0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

 ,

(44)
respectively. The maximal isotropic subspaces are show in
red and magenta, with magenta at the points of overlap with
S∆. HQ has Z2m -Golay complementary sequences while
HP does not. For HQ two characters satisfying (43) are
γ((0,0,0,0),(0,0,0,1)) and γ((0,0,0,0),(0,1,0,0)).

6 Z-Golay Sequences

We are particularly interested in conventional or Z-Golay
sequences, where the autocorrelation of the sequences is
calculated on Z rather than on Z2m . We now give a method
for constructing such sequences from sequences which are
Golay on Z2m+1 . We decompose Zm+1

2 into two subspaces
Zm+1

2 = L ⊕ U corresponding to a ∈ Zm+1
2 whose most

significant digit is a 0 or a 1 respectively. Both L and U
are isomorphic to Zm2 . Consider a vector |ψ〉 ∈ Hm of the
form

|ψ〉 =
∑
a∈L

βa|a〉. (45)

If a pair of vectors (|ψ〉, |ψ′〉) of this form are Z2m -Golay
complementary then the sequences ({βa : a ∈ L}, {β′a :
a ∈ L}) will be Golay complementary on Z.

Consider the ambiguity function of a vector of the form
(45). We have

Aψ(a,b) = 0, if a ∈ U, (46)
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Figure 2: For m = 4, the maximal isotropic subspaces HP

(upper) andHQ (lower) are shown in red and magenta, with
magenta at the points of overlap with S∆. The matrices P
and Q are given in (44). HQ has Z2m -Golay complemen-
tary sequences while HP does not.

and
Aψ(a,b⊕w) = Aψ(a,b). (47)

Identifying Em with L×L, we only need to ensure that the
supports of Aφ +Aψ do not intersect in L×L. That is, we
replace suppS∆ is the above arguments with the set

R∆ = {(a,b) : a ∈ Zm2 \{0},b ∈ Ca}, (48)

a picture of which is shown in Figure 3 for m = 4.

We can state the following sufficient condition for the ex-
istence of orthonormal bases of Z-Golay complementary
sequences.

Proposition 5. Let HP ∈ Em be the maximal isotropic
subspace corresponding to the binary symmetric matrix P
as defined in (40). If there exists a character γ(a0,b0) of
Zm2 × Zm2 , such that

γ(a0,b0)({(a,Pa) : a ∈ Zm2 \{0},Pa ∈ Ca}) = {−1},
(49)

then for each |φ〉 ∈ FHP
, the pair (|φ〉, D(a0,b0)|φ〉) is

Z-Golay complementary.

We will refer to a maximal isotropic subspace for which
such a character exists as Z-Golay. We note here that [6]
points out the connection between Golay sequences and
certain cosets of the first order Reed-Muller codes in the
second order Reed-Muller codes. These cosets are inti-
mately connected with the above maximal isotropic sub-
spaces [4, 10].

This situation is illustrated in Figure 3 for the maximal
isotropic subspace HP ⊂ Em with

P =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 . (50)

Two characters satisfying (49) are γ((0,0,0,0),(0,0,0,1)) and
γ((0,0,0,0),(1,0,0,0)).

0000 1000 1111

0000

1000

1111

a

b

Figure 3: The set R∆ (black and magenta) and the support
of the maximal isotropic subspace HP ∈ E4 with P given
by (50) (red and magenta). The intersection between the
two sets is shown in magenta

7 An Example — Budisin Golay Sequences

In this section we consider the maximal isotropic subspaces
associated with binary symmetric matrices of the form (50),
in general, matrices with elements of the form

[Pm]i,j = δi,j+1 + δi+1,j , i, j = 1, · · · ,m. (51)

wherever the indices make sense. These generate the clas-
sical Welti-PONS Golay complementary sequences. We
write

Im = {(a,Pma) : a ∈ Zm2 \{0},Pma ∈ Ca}. (52)



For m = 2 we have

P2 =
(

0 1
1 0

)
, (53)

and

I2 = {(a,P2a) : a ∈ Z2
2\{0},P2a ∈ Ca}

= {((1, 1), (1, 1))}.
(54)

For m = 3 we have

P3 =

0 1 0
1 0 1
0 1 0

 , (55)

and

I3 = {((1, 0, 1), (0, 0, 0)), ((1, 1, 1), (1, 0, 1))}. (56)

For m = 4 we have

P4 =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 , (57)

and

I4 ={((1, 1, 0, 1), (1, 1, 0, 0)), ((1, 0, 1, 1), (0, 0, 1, 1)),
((1, 1, 1, 1), (1, 0, 0, 1))}.

(58)

Now we observe generally that if the first or last element
of the vector a is 0, then Pa ∈ Ca if, and only if, a = 0.
Furthermore, if a has a 0 at the 1 < nth < m element and
Pa ∈ Ca, then the (n − 1)th and (n + 1)th elements must
be 1, i.e., a 0 always occurs in the combination 1, 0, 1. This
implies that the ”a” vectors in Im are obtained by append-
ing 0, 1 to the vectors from Im−2 and appending 1 to the
vectors from Im−1. Thus,

|Im| = |Im−1|+ |Im−2|, (59)

for m > 3, and so we see that for the matrices Pm in (51)

|{(a,Pma) : a ∈ Zm2 \{0},Pma ∈ Ca}| = Fm, (60)

where Fm is the mth term of the Fibonacci sequence (F1 =
F2 = 1). It is also easily seen that for all m > 1

γ((0,0,··· ,0,0),(0,0,··· ,0,1))(Im) = {−1}, (61)

and
γ((0,0,··· ,0,0),(1,0,··· ,0,0))(Im) = {−1}. (62)

So for all m > 1 the maximal isotropic subspace HPm ∈
Em is Z-Golay.

The Budisin Golay complementary sequences correspond
to the maximal isotropic subspaces with binary symmetric
matrices

P′m = SPmST , (63)

with Pm given by (50) with S any permutation matrix.
There are m!/2 distinct P′. If we add an arbitrary non-zero
binary diagonal matrix to P′m we also obtain Z-Golay com-
plementary sequences but taking values in {1, i,−1,−i}
rather than in {1,−1}.

8 Conclusion

We have show in this paper that the finite Heisenberg-Weyl
groups provide a new and fruitful way of viewing the Go-
lay complementary sequences (complementary waveforms)
and of understanding the origin of their special proper-
ties. The work we have presented here is a summary of
particular results in a more general program of work in
which the finite Heisenberg-Weyl groups are used as a uni-
fying mathematical structure for analysing the correlation
and cross-correlation of unimodular sequences and conse-
quently phase code radar pulses.

Libraries of waveforms formed using these methods are
able to provide collections of ambiguity functions that
cover the range-Doppler plane in an efficient way, and thus
provide the basic idea for a suite of waveforms optimized
for extraction of information from the environment in an
active sensing context.
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